Boosting Efficient and Sustainable Alkaline Water Oxidation on a W‐CoOOH‐TT Pair‐Sites Catalyst Synthesized via Topochemical Transformation

Author:

Wang Ligang12ORCID,Su Hui3,Tan Guoying4,Xin Junjie1,Wang Xiaoge1,Zhang Zhuang4,Li Yaping4,Qiu Yi1,Li Xiaohui1,Li Haisheng1,Ju Jing1,Duan Xinxuan4,Xiao Hai2,Chen Wenxing5,Liu Qinghua6,Sun Xiaoming4,Wang Dingsheng2,Sun Junliang1ORCID

Affiliation:

1. College of Chemistry and Molecular Engineering Peking University Beijing National Laboratory for Molecular Sciences (BNLMS) 5 Yiheyuan Road Beijing 100871 China

2. Department of Chemistry Tsinghua University Beijing 100084 China

3. Key Laboratory of Light Energy Conversion Materials of Hunan Province College College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China

4. State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

5. Energy & Catalysis Center School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

6. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230029 China

Abstract

AbstractThe development of facile methods for constructing highly active, cost‐effective catalysts that meet ampere‐level current density and durability requirements for an oxygen evolution reaction is crucial. Herein, a general topochemical transformation strategy is posited: M‐Co9S8 single‐atom catalysts (SACs) are directly converted into M‐CoOOH‐TT (M = W, Mo, Mn, V) pair‐sites catalysts under the role of incorporating of atomically dispersed high‐valence metals modulators through potential cycling. Furthermore, in situ X‐ray absorption fine structure spectroscopy is used to track the dynamic topochemical transformation process at the atomic level. The W‐Co9S8 breaks through the low overpotential of 160 mV at 10 mA cm−2. A series of pair‐site catalysts exhibit a large current density of approaching 1760 mA cm−2 at 1.68 V vs reversible hydrogen electrode (RHE) in alkaline water oxidation and achieve a ≈240‐fold enhancement in the normalized intrinsic activity compare to that reported CoOOH, and sustainable stability of 1000 h. Moreover, the O─O bond formation is confirmed via a two‐site mechanism, supported by in situ synchrotron radiation infrared and density functional theory (DFT) simulations, which breaks the limit of adsorption‐energy scaling relationship on conventional single‐site.

Funder

National Key Research and Development Program of China

Beijing Synchrotron Radiation Facility

National Synchrotron Radiation Laboratory

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3