A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction

Author:

Seitz Linsey C.1,Dickens Colin F.12,Nishio Kazunori34,Hikita Yasuyuki3,Montoya Joseph2,Doyle Andrew2,Kirk Charlotte2,Vojvodic Aleksandra2,Hwang Harold Y.34,Norskov Jens K.12,Jaramillo Thomas F.12

Affiliation:

1. SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, CA 94305, USA.

2. SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

3. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

4. Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA.

Abstract

Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrO x /SrIrO 3 ) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO 3 . This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO 3 or anatase IrO 2 motifs. The IrO x /SrIrO 3 catalyst outperforms known IrO x and ruthenium oxide (RuO x ) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.

Funder

U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences

DOE, Office of Science

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3