A Wafer‐Scale Nanoporous 2D Active Pixel Image Sensor Matrix with High Uniformity, High Sensitivity, and Rapid Switching

Author:

Park Heekyeong12,Sen Anamika1,Kaniselvan Manasa3,AlMutairi AbdulAziz3,Bala Arindam1,Lee Luke P.24,Yoon Youngki3,Kim Sunkook1ORCID

Affiliation:

1. Department of Advanced Materials Science and Engineering Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

2. Harvard Institute of Medicine Harvard Medical School Harvard University Brigham and Women's Hospital Boston MA 02115 USA

3. Waterloo Institute for Nanotechnology (WIN) & Department of Electrical and Computer Engineering University of Waterloo Waterloo ON N2L 3G1 Canada

4. Institute of Quantum Biophysics Department of Biophysics Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea

Abstract

Abstract2D transition‐metal dichalcogenides (TMDs) have been successfully developed as novel ubiquitous optoelectronics owing to their excellent electrical and optical characteristics. However, active‐matrix image sensors based on TMDs have limitations owing to the difficulty of fabricating large‐area integrated circuitry and achieving high optical sensitivity. Herein, a large‐area uniform, highly sensitive, and robust image sensor matrix with active pixels consisting of nanoporous molybdenum disulfide (MoS2) phototransistors and indium–gallium–zinc oxide (IGZO) switching transistors is reported. Large‐area uniform 4‐inch wafer‐scale bilayer MoS2 films are synthesized by radio‐frequency (RF) magnetron sputtering and sulfurization processes and patterned to be a nanoporous structure consisting of an array of periodic nanopores on the MoS2 surface via block copolymer lithography. Edge exposure on the nanoporous bilayer MoS2 induces the formation of subgap states, which promotes a photogating effect to obtain an exceptionally high photoresponsivity of 5.2 × 104 A W−1. A 4‐inch‐wafer‐scale image mapping is successively achieved using this active‐matrix image sensor by controlling the device sensing and switching states. The high‐performance active‐matrix image sensor is state‐of‐the‐art in 2D material‐based integrated circuitry and pixel image sensor applications.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3