Exsolution Modeling and Control to Improve the Catalytic Activity of Nanostructured Electrodes

Author:

Kim Yo Han1,Jeong Hyeongwon1,Won Bo‐Ram1,Myung Jae‐ha1ORCID

Affiliation:

1. Department of Materials Science and Engineering Incheon National University Incheon 22012 Republic of Korea

Abstract

AbstractIn situ exsolution for nanoscale electrode design has attracted considerable attention because of its promising activity and high stability. However, fundamental research on the mechanisms underlying particle growth remains insufficient. Herein, cation‐diffusion‐determined exsolution is presented using an analytical model based on classical nucleation and diffusion. In the designed perovskite system, the exsolution trend for particle growth is consistent with this diffusion model, which strongly depends on the initial cation concentration and reduction conditions. Based on the experimental and theoretical results, a highly Ni‐doped anode and an electrochemical switching technique are employed to promote exsolution and overcome growth limitations. The optimal cell exhibits an outstanding maximum power density of 1.7 W cm−2 at 900 °C and shows no evident degradation when operating at 800 °C for 240 h under wet H2. This study provides crucial insights into the developing and tuning of heterogeneous catalysts for energy‐conversion applications.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3