Accounting for the Quantum Capacitance of Graphite in Constant Potential Molecular Dynamics Simulations

Author:

Goloviznina Kateryna12ORCID,Fleischhaker Johann13,Binninger Tobias45ORCID,Rotenberg Benjamin12ORCID,Ers Heigo6ORCID,Ivanistsev Vladislav6ORCID,Meissner Robert37,Serva Alessandra12ORCID,Salanne Mathieu128ORCID

Affiliation:

1. CNRS Physicochimie des Électrolytes et Nanosystèmes Interfaciaux Sorbonne Université F‐75005 Paris France

2. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459 80039 Amiens Cedex France

3. Institute of Polymers and Composites Hamburg University of Technology 21073 Hamburg Germany

4. ICGM Univ Montpellier, CNRS ENSCM 34293 Montpellier France

5. Theory and Computation of Energy Materials (IEK‐13) Institute of Energy and Climate Research Forschungszentrum Jülich GmbH 52425 Jülich Germany

6. University of Tartu Ravila 14a Tartu 51004 Estonia

7. Institute of Surface Science Helmholtz‐Zentrum Hereon 21502 Geesthacht Germany

8. Institut Universitaire de France (IUF) 75231 Paris France

Abstract

AbstractMolecular dynamics (MD) simulations at a constant electric potential are an essential tool to study electrochemical processes, providing microscopic information on the structural, thermodynamic, and dynamical properties. Despite the numerous advances in the simulation of electrodes, they fail to accurately represent the electronic structure of materials such as graphite. In this work, a simple parameterization method that allows to tune the metallicity of the electrode based on a quantum chemistry calculation of the density of states (DOS) is introduced. As a first illustration, the interface between graphite electrodes and two different liquid electrolytes, an aqueous solution of NaCl and a pure ionic liquid, at different applied potentials are studied. It is shown that the simulations reproduce qualitatively the experimentally‐measured capacitance; in particular, they yield a minimum of capacitance at the point of zero charge (PZC), which is due to the quantum capacitance (QC) contribution. An analysis of the structure of the adsorbed liquids allows to understand why the ionic liquid displays a lower capacitance despite its large ionic concentration. In addition to its relevance for the important class of carbonaceous electrodes, this method can be applied to any electrode materials (e.g. 2D materials, conducting polymers, etc), thus enabling molecular simulation studies of complex electrochemical devices in the future.

Funder

H2020 European Research Council

Grand Équipement National De Calcul Intensif

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3