Affiliation:
1. G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
Abstract
AbstractDirect printing of metallic nanostructures is highly desirable but current techniques cannot achieve nanoscale resolutions or are too expensive and slow. Photoreduction of solvated metal ions into metallic nanoparticles is an attractive strategy because it is faster than deposition‐based techniques. However, it is still limited by the resolution versus cost tradeoff because sub‐diffraction printing of nanostructures requires high‐intensity light from expensive femtosecond lasers. Here, this tradeoff is overcome by leveraging the spatial and temporal coherence properties of low‐intensity diode‐based superluminescent light. The superluminescent light projection (SLP) technique is presented to rapidly print sub‐diffraction nanostructures, as small as 210 nm and at periods as small as 300 nm, with light that is a billion times less intense than femtosecond lasers. Printing of arbitrarily complex 2D nanostructured silver patterns over 30 µm × 80 µm areas in 500 ms time scales is demonstrated. The post‐annealed nanostructures exhibit an electrical conductivity up to 1/12th that of bulk silver. SLP is up to 480 times faster and 35 times less expensive than printing with femtosecond lasers. Therefore, it transforms nanoscale metal printing into a scalable format, thereby significantly enhancing the transition of nano‐enabled devices from research laboratories into real‐world applications.
Funder
National Science Foundation
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献