Sodium‐Based Concave Metasurfaces for High Performing Plasmonic Optical Filters by Templated Spin‐on‐Sodiophobic‐Glass

Author:

Yang Yuhan1,Fu Hanyu1,Su Huanhuan2,Chen Shuying1,Wu Shan3,Liang Jie1,Wei Tianqi1,Wang Yang1,Zhu Shining1,Zhu Jia1ORCID,Zhou Lin1

Affiliation:

1. National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Nanjing University Nanjing 210093 P. R. China

2. School of Electronic Engineering Nanjing Xiaozhuang University Nanjing 211171 China

3. Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes Fuyang Normal University Fuyang 236037 P. R. China

Abstract

AbstractOptical filters have aroused tremendous excitement in advanced photonic instruments and modern digital displays due to their flexible capability of spectrum manipulation. Plasmonic metasurfaces of narrow bandwidth, high spectral contrast, and robust structure tolerance are highly desired for optical filtration (especially in the visible regime) but rather challenging as large spectral broadening from intrinsic ohmic loss and design/fabrication deviations. Here the high‐performing sodium‐based metasurfaces are demonstrated for optical filtration across 450 to 750 nm by unique structure design of spatially decoupled concave surfaces and precise fabrication through templated solidification of liquid metals. Thanks to the distinct suppression of metallic loss as well as fabrication tolerance of interfacial structures, the as‐prepared concave metasurfaces enable a minimum linewidth of ≈15 nm, a maximal optical contrast of ≈93%, and a high measure‐to‐design spectral match ratio ≈1500. These results have for the first time pushed the operation wavelengths of sodium‐based plasmonic devices from infrared to visible which in turn demonstrates the capability of filling the blank of commercial dielectric optical filters thus far.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3