Scalable Layer‐Controlled Oxidation of Bi2O2Se for Self‐Rectifying Memristor Arrays With sub‐pA Sneak Currents

Author:

Zhao Yingjie1,Lou Zhefeng2,Hu Jiaming1,Li Zishun1,Xu Lanxin1,Chen Zhe1,Xu Zhuokai2,Wang Tao2,Wu Mengqi1,Ying Haoting1,An Minghao1,Li Wenbin1,Lin Xiao2,Zheng Xiaorui13ORCID

Affiliation:

1. School of Engineering Westlake University Hangzhou 310024 P. R. China

2. Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science and Research Center for Industries of the Future Westlake University Hangzhou 310030 P. R. China

3. Westlake Institute for Optoelectronics Westlake University Hangzhou 310030 China

Abstract

AbstractSmart memristors with innovative properties are crucial for the advancement of next‐generation information storage and bioinspired neuromorphic computing. However, the presence of significant sneak currents in large‐scale memristor arrays results in operational errors and heat accumulation, hindering their practical utility. This study successfully synthesizes a quasi‐free‐standing Bi2O2Se single‐crystalline film and achieves layer‐controlled oxidation by developing large‐scale UV‐assisted intercalative oxidation, resulting β‐Bi2SeO5/Bi2O2Se heterostructures. The resulting β‐Bi2SeO5/Bi2O2Se memristor demonstrates remarkable self‐rectifying resistive switching performance (over 105 for ON/OFF and rectification ratios, as well as nonlinearity) in both nanoscale (through conductive atomic force microscopy) and microscale (through memristor array) regimes. Furthermore, the potential for scalable production of self‐rectifying β‐Bi2SeO5/Bi2O2Se memristor, achieving sub‐pA sneak currents to minimize cross‐talk effects in high‐density memristor arrays is demonstrated. The memristors also exhibit ultrafast resistive switching (sub‐100 ns) and low power consumption (1.2 pJ) as characterized by pulse‐mode testing. The findings suggest a synergetic effect of interfacial Schottky barriers and oxygen vacancy migration as the self‐rectifying switching mechanism, elucidated through controllable β‐Bi2SeO5 thickness modulation and theoretical ab initio calculations.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3