Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing

Author:

Rao Feng12ORCID,Ding Keyuan12ORCID,Zhou Yuxing3ORCID,Zheng Yonghui1ORCID,Xia Mengjiao4,Lv Shilong1,Song Zhitang1ORCID,Feng Songlin1ORCID,Ronneberger Ider5,Mazzarello Riccardo5ORCID,Zhang Wei3ORCID,Ma Evan36

Affiliation:

1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

2. College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.

3. Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China.

4. International Laboratory of Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China.

5. Institute for Theoretical Solid State Physics, JARA-FIT and JARA-HPC, RWTH Aachen University, Aachen D-52074, Germany.

6. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Abstract

Fast phase change with no preconditions Random access memory (RAM) devices that rely on phase changes are primarily limited by the speed of crystallization. Rao et al. combined theory with a simple set of selection criteria to isolate a scandium-doped antimony telluride (SST) with a subnanosecond crystallization speed (see the Perspective by Akola and Jones). They synthesized SST and constructed a RAM device with a 700-picosecond writing speed. This is an order of magnitude faster than previous phase-change memory devices and competitive with consumer dynamic access, static random access, and flash memory. Science , this issue p. 1423 ; see also p. 1386

Funder

U.S. Department of Energy

Deutsche Forschungsgemeinschaft

National Natural Science Foundation of China

Chinese Academy of Sciences

Science and Technology Foundation of Shenzhen

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 447 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3