Self‐Assembled Interlayer Enables High‐Performance Organic Photovoltaics with Power Conversion Efficiency Exceeding 20%

Author:

Guan Shitao1,Li Yaokai12,Xu Chang1,Yin Ni3,Xu Chenran4,Wang Congxu5,Wang Mengting1,Xu Yuxi5,Chen Qi3,Wang Dawei4,Zuo Lijian12,Chen Hongzheng12ORCID

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials International Research Center for X Polymers Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P. R. China

2. Institute of Advanced Semiconductor Research ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou 310022 P. R. China

3. CAS Center for Excellence in NanoscienceSuzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO) Chinese Academy of Science Suzhou 215123 P. R. China

4. Interdisciplinary Center for Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device Department of Physics Zhejiang University Hangzhou 310027 P. R. China

5. School of Engineering Westlake University Hangzhou 310024 P. R. China

Abstract

AbstractInterfacial layers (ILs) are prerequisites to form the selective charge transport for high‐performance organic photovoltaics (OPVs) but mostly result in considerable parasitic absorption loss. Trimming the ILs down to a mono‐molecular level via the self‐assembled monolayer is an effective strategy to mitigate parasitic absorption loss. However, such a strategy suffers from inferior electrical contact with low surface coverage on rough surfaces and poor producibility. To address these issues, here, the self‐assembled interlayer (SAI) strategy is developed, which involves a thin layer of 2–6 nm to form a full coverage on the substrate via both covalent and van der Waals bonds by using a self‐assembled molecule of 2‐(9H‐carbazol‐9‐yl) (2PACz). Via the facile spin coating without further rinsing and annealing process, it not only optimizes the electrical and optical properties of OPVs, which enables a world‐record efficiency of 20.17% (19.79% certified) but also simplifies the tedious processing procedure. Moreover, the SAI strategy is especially useful in improving the absorbing selectivity for semi‐transparent OPVs, which enables a record light utilization efficiency of 5.34%. This work provides an effective strategy of SAI to optimize the optical and electrical properties of OPVs for high‐performance and solar window applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3