Semimetallic Bismuthene with Edge‐Rich Dangling Bonds: Broad‐Spectrum‐Driven and Edge‐Confined Electron Enhancement Boosting CO2 Hydrogenation Reduction

Author:

Wang Bin12,Chen Hailong3,Zhang Wei1,Liu Heyuan3,Zheng Zhaoke4,Huang Fangcheng5,Liu Jinyuan12,Liu Gaopeng1,Yan Xingwang1,Weng Yu‐Xiang3,Li Huaming1,She Yuanbin6,Chu Paul K.2ORCID,Xia Jiexiang1

Affiliation:

1. School of Chemistry and Chemical Engineering Institute for Energy Research Jiangsu University 301 Xuefu Road Zhenjiang 212013 P. R. China

2. Department of Physics Department of Materials Science and Engineering and Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong 999077 P. R. China

3. Beijing National Laboratory for Condensed Matter Physics CAS Key Laboratory of Soft Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China

4. State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 P. R. China

5. Department of Information Engineering Electronics, and Telecommunications Sapienza University of Rome Piazzale Aldo Moro 5 Roma 00185 Italy

6. College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China

Abstract

Broad‐spectrum‐driven high‐performance artificial photosynthesis is quite challenging. Herein, atomically ultrathin bismuthene with semimetallic properties is designed and demonstrated for broad‐spectrum (ultraviolet‐visible‐near infrared light) (UV–vis–NIR)‐driven photocatalytic CO2 hydrogenation. The trap states in the bandgap produced by edge dangling bonds prolong the lifetime of the photogenerated electrons from 90 ps in bulk Bi to 1650 ps in bismuthine, and excited‐state electrons are enriched at the edge of bismuthine. The edge dangling bonds of bismuthene as the active sites for adsorption/activation of CO2 increase the hybridization ability of the Bi 6p orbital and O 2p orbital to significantly reduce the catalytic reaction energy barrier and promote the formation of C─H bonds until the generation of CH4. Under λ ≥ 400 nm and λ ≥ 550 nm irradiation, the utilization ratios of photogenerated electron reduction CO2 hydrogenation to CO and CH4 for bismuthene are 58.24 and 300.50 times higher than those of bulk Bi, respectively. Moreover, bismuthene can extend the CO2 hydrogenation reaction to the near‐infrared region (λ ≥ 700 nm). This pioneering work employs the single semimetal element as an artificial photosynthetic catalyst to produce a broad spectral response.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3