Defective Metal Oxides: Lessons from CO2RR and Applications in NOxRR

Author:

Bui Thanh Son1ORCID,Lovell Emma C.1ORCID,Daiyan Rahman1ORCID,Amal Rose1ORCID

Affiliation:

1. School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractSluggish reaction kinetics and the undesired side reactions (hydrogen evolution reaction and self‐reduction) are the main bottlenecks of electrochemical conversion reactions, such as the carbon dioxide and nitrate reduction reactions (CO2RR and NO3RR). To date, conventional strategies to overcome these challenges involve electronic structure modification and modulation of the charge‐transfer behavior. Nonetheless, key aspects of surface modification, focused on boosting the intrinsic activity of active sites on the catalyst surface, are yet to be fully understood. Engingeering of oxygen vacancies (OVs) can tune surface/bulk electronic structure and improve surface active sites of electrocatalysts. The continuous breakthroughs and significant progress in the last decade position engineering of OVs as a potential technique for advancing electrocatalysis. Motivated by this, the state‐of‐the‐art findings of the roles of OVs in both the CO2RR and the NO3RR are presented. The review starts with a description of approaches to constructing and techniques for characterizing OVs. This is followed by an overview of the mechanistic understanding of the CO2RR and a detailed discussion on the roles of OVs in the CO2RR. Then, insights into the NO3RR mechanism and the potential of OVs on NO3RR based on early findings are highlighted. Finally, the challenges in designing CO2RR/NO3RR electrocatalysts and perspectives in studying OV engineering are provided.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3