Affiliation:
1. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China
2. Institute of Atomic Manufacturing Beihang University Beijing 100191 P. R. China
Abstract
AbstractTouch is a general term to describe mechanical stimuli. It is extremely difficult to develop touch sensors that can detect different modes of contact forces due to their low sensitivity and data decoupling. Simultaneously conducting tactile and slip sensing presents significant challenges for the design, structure, and performance of sensors. In this work, a highly sensitive sandwich‐structured sensor is achieved by exploiting the porosity and compressive modulus of the sensor's functional layer materials. The sensor shows an ultra‐high sensitivity of 1167 kPa−1 and a low‐pressure detection limit of 1.34 Pa due to its considerably low compression modulus of 23.8 Pa. Due to this ultra‐high sensitivity, coupled with spectral analysis, it allows for dual‐mode detection of both tactile and slip sensations simultaneously. This novel fabrication strategy and signal analysis method provides a new direction for the development of tactile/slip sensors.
Funder
Natural Science Foundation of Beijing Municipality
National Basic Research Program of China
National Natural Science Foundation of China
Shenzhen Science and Technology Innovation Program
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献