Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum

Author:

Gou Guang-Yang12ORCID,Li Xiao-Shi12ORCID,Jian Jin-Ming12ORCID,Tian He12ORCID,Wu Fan12ORCID,Ren Jie12ORCID,Geng Xiang-Shun12ORCID,Xu Jian-Dong12ORCID,Qiao Yan-Cong12ORCID,Yan Zhao-Yi12ORCID,Dun Guanhua12,Ahn Chi Won3ORCID,Yang Yi12ORCID,Ren Tian-Ling12ORCID

Affiliation:

1. Institute of Microelectronics, Tsinghua University, Beijing 100084, China.

2. Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.

3. Nano-Materials Group (FIRST Nano Co-op Center), National Nanofab Center (NNFC) at KAIST, Daejeon 34141, Republic of Korea.

Abstract

We report an artificial eardrum using an acoustic sensor based on two-dimensional MXene (Ti 3 C 2 T x ), which mimics the function of a human eardrum for realizing voice detection and recognition. Using MXene with a large interlayer distance and micropyramid polydimethylsiloxane arrays can enable a two-stage amplification of pressure and acoustic sensing. The MXene artificial eardrum shows an extremely high sensitivity of 62 kPa −1 and a very low detection limit of 0.1 Pa. Notably, benefiting from the ultrasensitive MXene eardrum, the machine-learning algorithm for real-time voice classification can be realized with high accuracy. The 280 voice signals are successfully classified for seven categories, and a high accuracy of 96.4 and 95% can be achieved by the training dataset and the test dataset, respectively. The current results indicate that the MXene artificial intelligent eardrum shows great potential for applications in wearable acoustical health care devices.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3