Affiliation:
1. Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS Faculté de Pharmacie Université de Strasbourg Illkirch 67401 France
Abstract
AbstractFörster resonance energy transfer (FRET) is essential in optical materials for light‐harvesting, photovoltaics, and biosensing, but its operating range is fundamentally limited by the Förster radius of ≈5 nm. In this work, FRET between fluorescent organic nanoparticles (NPs) is studied in order to break this limit. The donor and acceptor NPs are built from charged hydrophobic polymers loaded with cationic dyes and bulky hydrophobic counterions. Their surface is functionalized with DNA in order to control surface‐to‐surface distance. It is found that the FRET efficiency does not follow the canonic Förster law, reaching 0.70 and 0.45 values for NP–NP distances of 15 and 20 nm, respectively. This corresponds to the FRET efficiency decay as power four of the surface‐to‐surface NP–NP distance. Based on this long‐distance FRET, a DNA nanoprobe is developed, where a target DNA fragment, encoding the cancer marker survivin, bringing together donor and acceptor NPs at ≈15 nm distance. In this nanoprobe, a single‐molecular recognition results in unprecedented color switch for >5000 dyes, yielding a simple and fast assay with 18 attomoles limit of detection. Breaking the Förster distance limit for ultrabright NPs opens the route to advanced optical nanomaterials for amplified FRET‐based biosensing.
Funder
European Research Council
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献