A pH‐Cascaded DNA Hydrogel Mediated by Reconfigurable A‐motif Duplex, i‐Motif Quadruplex, and T·A‐T Triplex Structures

Author:

Hu Yuwei1ORCID,Ke Yujie1,Willner Itamar2

Affiliation:

1. Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Republic of Singapore

2. Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel

Abstract

AbstractGoverned by pH‐configurable A‐motif, i‐motif and T·A‐T triplex configurations, a cascaded DNA hydrogel subjecting to diverse pH values is presented. Under highly acidic conditions (pH 1.1), N1 protonation of adenine (pKa 3.5) in A‐strands generates AH+‐H+A units, resulting in a parallel A‐motif duplex crosslinked hydrogel. Under mild acid conditions (pH 5.2), the dissociation of A‐motif duplex into single A‐strands occurs due to the deprotonation of adenine, while N3 protonation of cytosine (pKa 6.5) in C‐strands creates hemi‐protonated C:C+ units, resulting in i‐motif bridged hydrogel. At neutral pH (pH 7.2), deprotonation of cytosine separates i‐motif crosslinkers. Simultaneously, the addition of auxiliary T‐strands results in the N3 protonation of thymine (pKa 10), generating T·A‐T triplex stabilized hydrogel. Under mildly alkaline conditions (pH 10.2), T·A‐T triplex separates into single T‐stands and A‐T duplex, resulting in the disassembly of DNA hydrogel. Therefore, a stepwise pH‐cascaded DNA hydrogel dictates the formation of structures following the pH steps 1.1 → 5.2 → 7.2 → 10.2 where pH‐triggered DNA secondary structures, including A‐motif, i‐motif and T·A‐T triplex, stabilize the hydrogel. The study advances DNA hydrogels from single pH‐responsiveness to multiple cascaded pH values, which opens up new possibilities for the development of smart hydrogels capable of adapting to various environmental conditions.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3