Salt‐Induced High‐Density Vacancy‐Rich 2D MoS2 for Efficient Hydrogen Evolution

Author:

Man Ping123,Jiang Shan45,Leung Ka Ho123,Lai Ka Hei45,Guang Zhiqiang12,Chen Honglin45,Huang Lingli123,Chen Tianren45,Gao Shan123,Peng Yung‐Kang1,Lee Chun‐Sing12,Deng Qingming6,Zhao Jiong45,Ly Thuc Hue1237ORCID

Affiliation:

1. Department of Chemistry City University of Hong Kong Kowloon Hong Kong 999077 P. R. China

2. Department of Chemistry Center of Super‐Diamond & Advanced Films (COSDAF) City University of Hong Kong Kowloon Hong Kong 999077 P. R. China

3. City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China

4. Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong 999077 P. R. China

5. The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 P. R. China

6. Physics department and Jiangsu Key Laboratory for Chemistry of Low‐Dimensional Materials Huaiyin Normal University Huaian 223300 P. R. China

7. Department of Chemistry and State Key Laboratory of Marine Pollution City University of Hong Kong Kowloon Hong Kong 999077 P. R. China

Abstract

AbstractEmerging non‐noble metal 2D catalysts, such as molybdenum disulfide (MoS2), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post‐treatment processes. Here, a novel salt‐assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh‐density vacancy‐rich 2H‐MoS2, with a controllable sulfur vacancy density of up to 3.35 × 1014 cm−2. This approach involves a pre‐sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2‐K‐H2O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post‐treatment methods. The vacancy‐rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm−2) and a Tafel slope of 54.3 mV dec−1 in 0.5 m H2SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt‐assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.

Funder

National Natural Science Foundation of China

Environment and Conservation Fund

City University of Hong Kong

Hong Kong Polytechnic University

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3