Universal Synthesis of Core–Shell‐Structured Ordered Mesoporous Transition Metal Dichalcogenides/Metal Oxides Heterostructures with Active Edge Sites

Author:

Li Zhenliang1,Rao Yujian1,Wang Zhehan1,Zhang Tuo1,Wu Guodong1,Sun Litao23,Ren Yuan1ORCID,Tao Li12ORCID

Affiliation:

1. School of Materials Science and Engineering Jiangsu Key Laboratory for Advanced Metallic Materials Southeast University Nanjing 211189 China

2. Center of 2D Materials and Devices Southeast University Nanjing 211189 China

3. Key Lab of MEMS of Ministry of Education SEU‐FEI Nano‐Pico Center Southeast University Nanjing 211189 China

Abstract

Two‐dimensional (2D) transition metal dichalcogenides (TMDs) are widely used in interfacial reactions and electronic devices due to their tunable bandgap and high efficiency of carrier transport. However, the lack of fully exposed active sites in bulk samples or stacked nanosheets leads to limited performances. In this work, a general method is developed to construct ordered mesoporous TMDs/metal oxides (OM‐TMDs/MOs) heterostructures, including WS2/WO3, WSe2/WO3, WTe2/WO3, MoS2/MoO3, and V3S4/V2O3, through one‐step thermal sulfurization (selenidation/tellurization) of self‐assembled amphiphilic block copolymer/polyoxometalates clusters nanocomposites with ordered mesostructures. The OM‐TMDs/MOs possess highly OM structures with high specific surface area, large pore size, and rich active edge sites in the frameworks of heterostructures. The chemiresistive gas sensor based on OM‐WS2/WO3 shows excellent NO2‐sensing performances at room temperature, with high sensitivity, ultrahigh selectivity (/Sgas > 20), and fast response speed (6 s). Theoretical study reveals that the strong adsorption capacity of WS2/WO3 heterostructure and edge sites of WS2 for NO2 molecules and the high charge transfer between them contribute to high selectivity and sensitivity of the sensor. This universal method provides novel strategy for synthesis of OM TMDs‐based nanomaterials, showing great potential in various applications such as electronic devices, catalysis, energy storage, and conversions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3