Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives

Author:

Chen Lu12,Liu Te‐Huan3,Wang Xiangze3,Wang Yandong12,Cui Xiwei12,Yan Qingwei12,Lv Le12,Ying Junfeng12,Gao Jingyao4,Han Meng5,Yu Jinhong12,Song Chengyi6,Gao Jinwei78,Sun Rong5,Xue Chen12,Jiang Nan12,Deng Tao6,Nishimura Kazuhito9,Yang Ronggui3,Lin Cheng‐Te12ORCID,Dai Wen12

Affiliation:

1. Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan Wuhan 430074 P. R. China

4. Jiangxi Copper Technology Research Institute Co., Ltd. Nanchang Jiangxi 330096 P. R. China

5. Shenzhen Institute of Advanced Electronic Materials Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

6. The State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai 200240 P. R. China

7. Guangdong Provincial Key Laboratory of Optical Information Materials and Technology Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 P. R. China

8. Guangdong Provincial Engineering Technology Research Center for Transparent Conductive Materials Guangzhou 510006 P. R. China

9. Advanced Nano‐processing Engineering Lab Mechanical Systems Engineering Kogakuin University Tokyo 192‐0015 Japan

Abstract

AbstractThe rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1K−1at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1K−1at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Ningbo

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3