Affiliation:
1. Chemical Process Engineering RWTH Aachen University Forckenbeckstr. 51 52074 Aachen Germany
2. xolo GmbH Volmerstraße 9B 12489 Berlin Germany
3. DWI–Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany
4. Department of Chemistry Humboldt‐Universität zu Berlin Brook‐Taylor‐Street 2 12489 Berlin Germany
Abstract
AbstractAdditive manufacturing techniques continue to improve in resolution, geometrical freedom, and production rates, expanding their application range in research and industry. Most established techniques, however, are based on layer‐by‐layer polymerization processes, leading to an inherent trade‐off between resolution and printing speed. Volumetric 3D printing enables the polymerization of freely defined volumes allowing the fabrication of complex geometries at drastically increased production rates and high resolutions, marking the next chapter in light‐based additive manufacturing. This work advances the volumetric 3D printing technique xolography to a continuous process. Dual‐color photopolymerization is performed in a continuously flowing resin, inside a tailored flow cell. Supported by simulations, the flow profile in the printing area is flattened, and resin velocities at the flow cell walls are increased to minimize unwanted polymerization via laser sheet‐induced curing. Various objects are printed continuously and true to shape with smooth surfaces. Parallel object printing paves the way for up‐scaling the continuous production, currently reaching production rates up to 1.75 mm3 s−1 for the presented flow cell. Xolography in flow provides a new opportunity for scaling up volumetric 3D printing with the potential to resolve the trade‐off between high production rates and high resolution in light‐based additive manufacturing.
Funder
Deutsche Forschungsgemeinschaft
Werner Siemens-Stiftung
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献