Affiliation:
1. Department of Industrial Engineering University of Padova Via Marzolo, 9. Interno 4 Padova 35131 Italy
2. Department of Materials Science and Engineering The Pennsylvania State University University Park State College PA 16802 USA
Abstract
AbstractAdditive manufacturing (AM) of ceramics has significantly contributed to advancements in ceramic fabrication, solving some of the difficulties of conventional ceramic processing and providing additional possibilities for the structure and function of components. However, defects induced by the layer‐by‐layer approach on which traditional AM techniques are based still constitute a challenge to address. This study presents the volumetric AM of a SiOC ceramic from a preceramic polymer using xolography, a linear volumetric AM process that allows to avoid the staircase effect typical of other vat photopolymerization techniques. Besides optimizing the trade‐off between preceramic polymer content and transmittance, a pore generator is introduced to create transient channels for gas release before decomposition of the organic constituents and moieties, resulting in crack‐free solid ceramic structures even at low ceramic yield. Formulation optimization alleviated sinking of printed parts during printing and prevented shape distortion. Complex solid and porous ceramic structures with a smooth surface and sharp features are fabricated under the optimized parameters. This work provides a new method for the AM of ceramics at µm/mm scale with high surface quality and large geometry variety in an efficient way, opening the possibility for applications in fields such as micromechanical systems and microelectronic components.
Funder
China Scholarship Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献