Indoor Self‐Powered Perovskite Optoelectronics with Ultraflexible Monochromatic Light Source

Author:

Jinno Hiroaki1,Shivarudraiah Sunil B.1,Asbjörn Rasmussen1,Vagli Gianluca1,Marcato Tommaso1,Eickemeyer Felix Thomas2,Pfeifer Lukas2,Yokota Tomoyuki3,Someya Takao3,Shih Chih‐Jen1ORCID

Affiliation:

1. Institute for Chemical and Bioengineering ETH Zurich Zurich 8093 Switzerland

2. Laboratory of Photonics and Interfaces Institute of Chemical Sciences and Engineering EPFL Lausanne 1015 Switzerland

3. Electrical and Electronic Engineering and Information Systems The University of Tokyo 7‐3‐1 Bunkyo‐ku Tokyo 113‐8656 Japan

Abstract

AbstractSelf‐powered skin optoelectronics fabricated on ultrathin polymer films is emerging as one of the most promising components for the next‐generation Internet of Things (IoT) technology. However, a longstanding challenge is the device underperformance owing to the low process temperature of polymer substrates. In addition, broadband electroluminescence (EL) based on organic or polymer semiconductors inevitably suffers from periodic spectral distortion due to Fabry–Pérot (FP) interference upon substrate bending, preventing advanced applications. Here, ultraflexible skin optoelectronics integrating high‐performance solar cells and monochromatic light‐emitting diodes using solution‐processed perovskite semiconductors is presented. n–i–p perovskite solar cells and perovskite nanocrystal light‐emitting diodes (PNC‐LEDs), with power‐conversion and current efficiencies of 18.2% and 15.2 cd A−1, respectively, are demonstrated on ultrathin polymer substrates with high thermal stability, which is a record‐high efficiency for ultraflexible perovskite solar cell. The narrowband EL with a full width at half‐maximum of 23 nm successfully eliminates FP interference, yielding bending‐insensitive spectra even under 50% of mechanical compression. Photo‐plethysmography using the skin optoelectronic device demonstrates a signal selectivity of 98.2% at 87 bpm pulse. The results presented here pave the way to inexpensive and high‐performance ultrathin optoelectronics for self‐powered applications such as wearable displays and indoor IoT sensors.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3