Resonant Band Hybridization in Alloyed Transition Metal Dichalcogenide Heterobilayers

Author:

Catanzaro Alessandro1,Genco Armando12,Louca Charalambos12,Ruiz‐Tijerina David A.3,Gillard Daniel J.1,Sortino Luca14,Kozikov Aleksey56,Alexeev Evgeny M.17,Pisoni Riccardo8,Hague Lee9,Watanabe Kenji10,Taniguchi Takashi11,Ensslin Klaus8,Novoselov Kostya S.12,Fal'ko Vladimir513,Tartakovskii Alexander I.1ORCID

Affiliation:

1. Department of Physics and Astronomy The University of Sheffield Sheffield S3 7RH UK

2. Dipartimento di Fisica Politecnico di Milano Piazza Leonardo da Vinci, 32 Milano 20133 Italy

3. Departamento de Física Química Instituto de Física, Universidad Nacional Autónoma de México Ciudad de México, C.P. 04510 Mexico México

4. Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics Ludwig‐Maximilians‐Universität München 80539 Munich Germany

5. Department of Physics and Astronomy University of Manchester Manchester M13 9PL UK

6. School of Mathematics, Statistics and Physics Newcastle University Newcastle upon Tyne NE1 7RU UK

7. Cambridge Graphene Centre University of Cambridge 9 J. J. Thomson Avenue Cambridge CB3 0FA UK

8. Solid State Physics Laboratory, ETH Zurich Zurich CH‐8093 Switzerland

9. National Graphene Institute, University of Manchester Manchester M13 9PL UK

10. Research Center for Electronic and Optical Materials National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

11. Research Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

12. Institute for Functional Intelligent Materials National University of Singapore Singapore 117546 Singapore

13. Henry Royce Institute for Advanced Materials University of Manchester Manchester M13 9PL United Kingdom

Abstract

AbstractBandstructure engineering using alloying is widely utilized for achieving optimized performance in modern semiconductor devices. While alloying has been studied in monolayer transition metal dichalcogenides, its application in van der Waals heterostructures built from atomically thin layers is largely unexplored. Here, heterobilayers made from monolayers of WSe2 (or MoSe2) and MoxW1 − xSe2 alloy are fabricated and nontrivial tuning of the resultant bandstructure is observed as a function of concentration x. This evolution is monitored by measuring the energy of photoluminescence (PL) of the interlayer exciton (IX) composed of an electron and hole residing in different monolayers. In MoxW1 − xSe2/WSe2, a strong IX energy shift of ≈100 meV is observed for x varied from 1 to 0.6. However, for x < 0.6 this shift saturates and the IX PL energy asymptotically approaches that of the indirect bandgap in bilayer WSe2. This observation is theoretically interpreted as the strong variation of the conduction band K valley for x > 0.6, with IX PL arising from the KK transition, while for x < 0.6, the bandstructure hybridization becomes prevalent leading to the dominating momentum‐indirect KQ transition. This bandstructure hybridization is accompanied with strong modification of IX PL dynamics and nonlinear exciton properties. This work provides foundation for bandstructure engineering in van der Waals heterostructures highlighting the importance of hybridization effects and opening a way to devices with accurately tailored electronic properties.

Funder

Engineering and Physical Sciences Research Council

Horizon 2020

Japan Society for the Promotion of Science

Royal Society

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3