Cation Defect‐Engineered Boost Fast Kinetics of Two‐Dimensional Topological Bi2Se3 Cathode for High‐Performance Aqueous Zn‐Ion Batteries

Author:

Zong Yu1,Chen Haichao1,Wang Jinsong2,Wu Menghua1,Chen Yu1,Wang Liyu1,Huang Xinliang1,He Hongwei1,Ning Xin1,Bai Zhongchao3,Wen Wen4,Zhu Daming4,Ren Xiaochuan1ORCID,Wang Nana5ORCID,Dou Shixue35

Affiliation:

1. Industrial Research Institute of Nonwovens & Technical Textiles College of Textiles & Clothing Shandong Center for Engineered Nonwovens Institute of Materials for Energy and Environment Qingdao University Qingdao 266071 China

2. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China

3. Institute of Energy Materials Science (IEMS) University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China

4. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

5. Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus North Wollongong New South Wales 2500 Australia

Abstract

AbstractThe challenge with aqueous zinc‐ion batteries (ZIBs) lies in finding suitable cathode materials that can provide high capacity and fast kinetics. Herein, two‐dimensional topological Bi2Se3 with acceptable Bi‐vacancies for ZIBs cathode (Cu‐Bi2−xSe3) is constructed through one‐step hydrothermal process accompanied by Cu heteroatom introduction. The cation‐deficient Cu‐Bi2−xSe3 nanosheets (≈4 nm) bring improved conductivity from large surface topological metal states contribution and enhanced bulk conductivity. Besides, the increased adsorption energy and reduced Zn2+ migration barrier demonstrated by density‐functional theory (DFT) calculations illustrate the decreased Coulombic ion‐lattice repulsion of Cu‐Bi2−xSe3. Therefore, Cu‐Bi2−xSe3 exhibits both enhanced ion and electron transport capability, leading to more carrier reversible insertion proved by in situ synchrotron X‐ray diffraction (SXRD). These features endow Cu‐Bi2−xSe3 with sufficient specific capacity (320 mA h g−1 at 0.1 A g−1), high‐rate performance (97 mA h g−1 at 10 A g−1), and reliable cycling stability (70 mA h g−1 at 10 A g−1 after 4000 cycles). Furthermore, quasi‐solid‐state fiber‐shaped ZIBs employing the Cu‐Bi2−xSe3 cathode demonstrate respectable performance and superior flexibility even under high mass loading. This work implements a conceptually innovative strategy represented by cation defect design in topological insulator cathode for achieving high‐performance battery electrochemistry.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Australian Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3