Polarization Switching and Correlated Phase Transitions in Fluorite‐Structure ZrO2 Nanocrystals

Author:

Li Xinyan12ORCID,Zhong Hai13,Lin Ting13,Meng Fanqi4,Gao Ang13,Liu Zhuohui12,Su Dong1,Jin Kuijuan135,Ge Chen13ORCID,Zhang Qinghua16ORCID,Gu Lin7

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. College of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China

3. School of Physical Sciences University of Chinese Academy of Science Beijing 100049 China

4. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China

5. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

6. Yangtze River Delta Physics Research Center Co. Ltd. Liyang 213300 China

7. Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials Department of Materials Science and Engineering Tsinghua University Beijing 100084 China

Abstract

AbstractUnconventional ferroelectricity in fluorite‐structure oxides enables tremendous opportunities in nanoelectronics owing to their superior scalability and silicon compatibility. However, their polarization order and switching process remain elusive due to the challenges of visualizing oxygen ions in nanocrystalline films. In this work, the oxygen shifting during polarization switching and correlated polar–nonpolar phase transitions are directly captured among multiple metastable phases in freestanding ZrO2 thin films by low‐dose integrated differential phase‐contrast scanning transmission electron microscopy (iDPC‐STEM). Bidirectional transitions between antiferroelectric and ferroelectric orders and interfacial polarization relaxation are clarified at unit‐cell scale. Meanwhile, polarization switching is strongly correlated with Zr–O displacement in reversible martensitic transformation between monoclinic and orthorhombic phases and two‐step tetrahedral‐to‐orthorhombic phase transition. These findings provide atomic insights into the transition pathways between metastable polymorphs and unravel the evolution of polarization orders in (anti)ferroelectric fluorite oxides.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3