Meta‐Attention Network Based Spectral Reconstruction with Snapshot Near‐Infrared Metasurface

Author:

He Haoyang1,Zhang Yuzhe2,Shao Yujie1,Zhang Yan1,Geng Guangzhou3,Li Junjie3,Li Xin1,Wang Yongtian1,Bian Liheng2,Zhang Jun2,Huang Lingling1ORCID

Affiliation:

1. Beijing Engineering Research Center of Mixed Reality and Advanced Display Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China School of Optics and Photonics Beijing Institute of Technology Beijing 100081 China

2. MIIT Key Laboratory of Complex‐field Intelligent Sensing Beijing Institute of Technology Beijing 100081 China

3. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing 100191 China

Abstract

AbstractNear‐infrared (NIR) spectral information is important for detecting and analyzing material compositions. However, snapshot NIR spectral imaging systems still pose significant challenges owing to the lack of high‐performance NIR filters and bulky setups, preventing effective encoding and integration with mobile devices. This study introduces a snapshot spectral imaging system that employs a compact NIR metasurface featuring 25 distinct C4 symmetry structures. Benefitting from the sufficient spectral variety and low correlation coefficient among these structures, center‐wavelength accuracy of 0.05 nm and full width at half maximum accuracy of 0.13 nm are realized. The system maintains good performance within an incident angle of 1°. A novel meta‐attention network prior iterative denoising reconstruction (MAN‐IDR) algorithm is developed to achieve high‐quality NIR spectral imaging. By leveraging the designed metasurface and MAN‐IDR, the NIR spectral images, exhibiting precise textures, minimal artifacts in the spatial dimension, and little crosstalk between spectral channels, are reconstructed from a single grayscale recording image. The proposed NIR metasurface and MAN‐IDR hold great promise for further integration with smartphones and drones, guaranteeing the adoption of NIR spectral imaging in real‐world scenarios such as aerospace, health diagnostics, and machine vision.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3