Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration

Author:

Ke Ju,Sun Yingshan,Dong Changzhe,Zhang Xingying,Wang Zijun,Lyu Liqing,Zhu Wei,Ansmann Albert,Su Lin,Bu Lingbing,Xiao Da,Wang Shuaibo,Chen Sijie,Liu Jiqiao,Chen Weibiao,Liu DongORCID

Abstract

AbstractAerosols and clouds greatly affect the Earth’s radiation budget and global climate. Light detection and ranging (lidar) has been recognized as a promising active remote sensing technique for the vertical observations of aerosols and clouds. China launched its first space-borne aerosol-cloud high-spectral-resolution lidar (ACHSRL) on April 16, 2022, which is capable for high accuracy profiling of aerosols and clouds around the globe. This study presents a retrieval algorithm for aerosol and cloud optical properties from ACHSRL which were compared with the end-to-end Monte-Carlo simulations and validated with the data from an airborne flight with the ACHSRL prototype (A2P) instrument. Using imaging denoising, threshold discrimination, and iterative reconstruction methods, this algorithm was developed for calibration, feature detection, and extinction coefficient (EC) retrievals. The simulation results show that 95.4% of the backscatter coefficient (BSC) have an error less than 12% while 95.4% of EC have an error less than 24%. Cirrus and marine and urban aerosols were identified based on the airborne measurements over different surface types. Then, comparisons were made with U.S. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) profiles, Moderate-resolution Imaging Spectroradiometer (MODIS), and the ground-based sun photometers. High correlations (R > 0.79) were found between BSC (EC) profiles of A2P and CALIOP over forest and town cover, while the correlation coefficients are 0.57 for BSC and 0.58 for EC over ocean cover; the aerosol optical depth retrievals have correlation coefficient of 0.71 with MODIS data and show spatial variations consistent with those from the sun photometers. The algorithm developed for ACHSRL in this study can be directly employed for future space-borne high-spectral-resolution lidar (HSRL) and its data products will also supplement CALIOP data coverage for global observations of aerosol and cloud properties.

Funder

Excellent Young Scientist Program of Zhejiang Provincial Natural Science Foundation of China

State Key Laboratory of Modern Optical Instrumentation Innovation Program

A Project Supported by Scientific Research Fund of Zhejiang University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3