Infrared Interlayer Excitons in Twist‐Free MoTe2/MoS2 Heterobilayers

Author:

Ju Qiankun12,Cai Qian1,Jian Chuanyong1,Hong Wenting1,Sun Fapeng12,Wang Bicheng1,Liu Wei13ORCID

Affiliation:

1. CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China

2. University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China

Abstract

AbstractExcitonic devices based on interlayer excitons in van der Waals heterobilayers are a promising platform for advancing photoelectric interconnection telecommunications. However, the absence of exciton emission in the crucial telecom C‐band has constrained their practical applications. Here, this limitation is addressed by reporting exciton emission at 0.8 eV (1550 nm) in a chemically vapor‐deposited, strictly aligned MoTe2/MoS2 heterobilayer, resulting from the direct bandgap transitions of interlayer excitons as identified by momentum–space imaging of their electrons and holes. The decay mechanisms dominated by direct radiative recombination ensure constant emission quantum yields, a basic demand for efficient excitonic devices. The atomically sharp interface enables the resolution of two narrowly‐splitter transitions induced by spin–orbit coupling, further distinguished through the distinct Landé g‐factors as the fingerprint of spin configurations. By electrical control, the double transitions coupling into opposite circularly‐polarized photon modes, preserve or reverse the helicities of the incident light with a degree of polarization up to 90%. The Stark effect tuning extends the emission energy range by over 150 meV (270 nm), covering the telecom C‐band. The findings provide a material platform for studying the excitonic complexes and significantly boost the application prospects of excitonic devices in silicon photonics and all‐optical telecommunications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Haixi Institute, Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3