Electrical control of interlayer exciton dynamics in atomically thin heterostructures

Author:

Jauregui Luis A.1ORCID,Joe Andrew Y.1ORCID,Pistunova Kateryna1ORCID,Wild Dominik S.1,High Alexander A.12,Zhou You12ORCID,Scuri Giovanni1ORCID,De Greve Kristiaan12,Sushko Andrey1ORCID,Yu Che-Hang3ORCID,Taniguchi Takashi4,Watanabe Kenji4ORCID,Needleman Daniel J.356,Lukin Mikhail D.1ORCID,Park Hongkun12ORCID,Kim Philip13ORCID

Affiliation:

1. Department of Physics, Harvard University, Cambridge, MA, USA.

2. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

3. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

4. National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan.

5. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

6. Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA.

Abstract

Taking electrical control Excitons—bound pairs of electrons and holes in a solid—can, in principle, be used as information carriers. However, their lifetime is limited because the electrons and holes tend to quickly recombine. One way to extend this lifetime is to physically separate electrons and holes—for example, by having them reside in different layers of a van der Waals heterostructure. Jauregui et al. used this strategy to form long-lived interlayer excitons in a heterostructure made out of monolayers of molybdenum diselenide (MoSe 2 ) and tungsten diselenide (WSe 2 ). Through electrical control of the layers in the heterostructure, the researchers further increased exciton lifetime and formed and manipulated charged excitons. Science , this issue p. 870

Funder

National Science Foundation

U.S. Army Research Laboratory

Elemental Strategy Initiative conducted by MEXT, Japan

CREST, JST

Samsung Electronics

the Gordon and Betty Moore Foundation

Department of Defense Vannevar Bush Faculty Fellowship

Air Force Office of Scientific Research MURI

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3