Eco‐Friendly Solvent Engineered CsPbI2.77Br0.23 Ink for Large‐Area and Scalable High Performance Perovskite Solar Cells

Author:

Abate Seid Yimer1,Qi Yifang1,Zhang Qiqi1,Jha Surabhi2,Zhang Haixin34,Ma Guorong2,Gu Xiaodan2,Wang Kun34,Patton Derek2,Dai Qilin1ORCID

Affiliation:

1. Department of Chemistry, Physics and Atmospheric Sciences Jackson State University Jackson MS 39217 USA

2. School of Polymer Science and Engineering Center for Optoelectronic Materials and Devices The University of Southern Mississippi Hattiesburg MS 39406 USA

3. Department of Physics University of Miami Goral Gables FL 33124 USA

4. Department of Physics and Astronomy Mississippi State University Mississippi State MS 39762 USA

Abstract

AbstractThe performance of large‐area perovskite solar cells (PSCs) has been assessed for typical compositions, such as methylammonium lead iodide (MAPbI3), using a blade coater, slot‐die coater, solution shearing, ink‐jet printing, and thermal evaporation. However, the fabrication of large‐area all‐inorganic perovskite films is not well developed. This study develops, for the first time, an eco‐friendly solvent engineered all‐inorganic perovskite ink of dimethyl sulfoxide (DMSO) as a main solvent with the addition of acetonitrile (ACN), 2‐methoxyethanol (2‐ME), or a mixture of ACN and 2‐ME to fabricate large‐area CsPbI2.77Br0.23 films with slot‐die coater at low temperatures (40–50 °C). The perovskite phase, morphology, defect density, and optoelectrical properties of prepared with different solvent ratios are thoroughly examined and they are correlated with their respective colloidal size distribution and solar cell performance. The optimized slot‐die‐coated CsPbI2.77Br0.23 perovskite film, which is prepared from the eco‐friendly binary solvents dimethyl sulfoxide:acetonitrile (0.8:0.2 v/v), demonstrates an impressive power conversion efficiency (PCE) of 19.05%. Moreover, the device maintains ≈91% of its original PCE after 1 month at 20% relative humidity in the dark. It is believed that this study will accelerate the reliable manufacturing of perovskite devices.

Funder

National Science Foundation

U.S. Department of Energy

Princeton University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3