COFs‐Based Metal‐Free Heterojunctions for Solar‐to‐Chemical Energy Conversion

Author:

Zhou Tianyu12,Ma Yunchao1,Feng Hao1,Lu Ye1,Che Guangbo3,Liu Chunbo12,Lan Yaqian4ORCID

Affiliation:

1. Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education Jilin Normal University Changchun 130103 P. R. China

2. Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions College of Engineering, Jilin Normal University Siping 136000 P. R. China

3. Baicheng Normal University Baicheng 137000 P. R. China

4. School of Chemistry South China Normal University Guangzhou Guangdong 510006 P. R. China

Abstract

AbstractCovalent organic frameworks (COFs) are a promising class of organic polymers with the merits of robust framework, ultrahigh porosity, and molecularly precise backbones, which reveals great potential for solar‐to‐chemical energy conversion in the context of mitigating energy and environmental crises. However, the photochemical activities of individual COFs are not as robust as desired, primarily due to their limited light absorption, insufficient dissociation of photogenerated excitons and readily recombined photogenerated carriers. Recently, COFs‐based metal‐free heterojunctions with synergistic effects provide a feasible route to boost the photocatalytic activity of COFs in more environmentally friendly and cost‐competitive manners. Herein, it is first systematically overview the advances in COFs‐based metal‐free heterojunctions from heterojunction types, heterointerfaces interactions, and primary design mechanisms. Then, typical COFs‐based metal‐free heterojunction photocatalysts (e.g., g‐C3N4‐COFs, carbon materials‐COFs, polymer semiconductor‐COFs, COFs‐COFs heterojunction) are summarized. Finally, the challenges and long‐term outlooks for future advances of COFs‐based metal‐free heterojunction photocatalysts are offered from the terms of photocatalytic efficiency, yield, stability, cost and reaction mechanisms, as well as the standardized evaluation method of activities. It is anticipated that this review can deliver new insights into the fundamental and engineering of COFs‐based metal‐free heterojunctions for solar‐to‐chemical energy conversion, and further accelerate the development of this area.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3