Gastrointestinal‐Peristalsis‐Inspired Hydrogel Actuators for NIR‐Controlled Transport of Viscous Liquids

Author:

Zhang Liyun1,Chen Linfeng12ORCID,Xu Lei1,Zhao Huan1,Wen Ruyi1,Xia Fan123ORCID

Affiliation:

1. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China

2. State Key Laboratory of Biogeology and Environmental Geology China University of Geosciences Wuhan 430074 P. R. China

3. Engineering Research Center of Nano‐Geomaterials of Ministry of Education China University of Geosciences Wuhan 430074 P. R. China

Abstract

AbstractLiquid transportation is fundamentally important in microfluidics, water collection, biosensing, and printing, and has attracted enormous research interest in the past decades. However, despite substantial progress, it remains a big challenge to achieve the controlled transport of viscous liquids (>100 mPa s) commonly existing in daily life and the chemical industry. Inspired by the gastrointestinal peristalsis of mammalians that can efficiently transport viscous chyme (viscosity up to 2000 mPa s) by the synergistic combination of contraction driving force and lubrication, here, the design and construction of double‐layered tubular hydrogel actuators for directional transport of highly viscous liquids ranging from ≈1000 mPa s to >80 000 mPa s under the control of an applied 808 nm laser, which is attributed to the cooperation of outer layer contraction and water film lubrication of the inner layer, is reported. It is demonstrated that the actuators are capable of transporting polymerizing liquid whose viscosity significantly increases to ≈11 182 mPa s in 2 h. This work paves a new avenue toward directional transport of highly viscous liquids, which not only expands the research scope of liquid transportation, but will spur the design of new liquid actuators with potential applications in viscous‐liquid‐based microfluidics, artificial blood vessels, and soft robots.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3