FeNC Oxygen Reduction Electrocatalyst with High Utilization Penta‐Coordinated Sites

Author:

Barrio Jesús12ORCID,Pedersen Angus12ORCID,Sarma Saurav Ch.2ORCID,Bagger Alexander2ORCID,Gong Mengjun3ORCID,Favero Silvia2ORCID,Zhao Chang‐Xin4,Garcia‐Serres Ricardo5ORCID,Li Alain Y.2ORCID,Zhang Qiang4,Jaouen Frédéric6ORCID,Maillard Frédéric7,Kucernak Anthony3ORCID,Stephens Ifan E. L.1ORCID,Titirici Maria‐Magdalena28ORCID

Affiliation:

1. Department of Materials Royal School of Mines Imperial College London London SW7 2AZ UK

2. Department of Chemical Engineering Imperial College London London SW7 2AZ UK

3. Department of Chemistry Molecular Sciences Research Hub Imperial College London White City Campus London W12 0BZ UK

4. Department of Chemical Engineering Tsinghua University 1 Tsinghua Road Beijing 100084 P. R. China

5. Chemistry and Biology of Metals Laboratory CNRS CEA IRIG University Grenoble Alpes 17 Rue Des Martyrs Grenoble 38000 France

6. Institute of Molecular Chemistry and Materials Sciences CNRS ENSCM University of Montpellier 1919 route de Mende Montpellier 34293 France

7. Laboratory of Electrochemistry and Physico‐Chemistry of Materials and Interfaces (LEPMI) CNRS University Savoie Mont‐Blanc Grenoble‐INP University Grenoble Alpes Grenoble 38000 France

8. Advanced Institute for Materials Research (WPI‐AIMR) Tohoku University 2‐1‐1 Katahira, Aobaku Sendai Miyagi 980‐8577 Japan

Abstract

AbstractAtomic Fe in N‐doped carbon (FeNC) electrocatalysts for oxygen (O2) reduction at the cathode of proton exchange membrane fuel cells are the most promising alternative to platinum‐group‐metal catalysts. Despite recent progress on atomic FeNC O2 reduction, their controlled synthesis and stability for practical applications remain challenging. A two‐step synthesis approach has recently led to significant advances in terms of Fe‐loading and mass activity; however, the Fe utilization remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, this issue is addressed by coordinating Fe in a highly porous nitrogen‐doped carbon support (≈3295 m2 g−1), prepared by pyrolysis of inexpensive 2,4,6‐triaminopyrimidine and a Mg2+ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54 × 1019 sites gFeNC−1 and a record 52% FeNx electrochemical utilization based on in situ nitrite stripping are achieved. The Fe single atoms are characterized pre‐ and post‐electrochemical accelerated stress testing by aberration‐corrected high‐angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X‐ray absorption spectroscopy and low‐temperature Mössbauer spectroscopy suggest the presence of penta‐coordinated Fe sites, which are further studied by density functional theory calculations.

Funder

Engineering and Physical Sciences Research Council

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3