Local Geometric Distortion to Stimulate Oxygen Reduction Activity of Atomically Dispersed Zn‐Nx Sites for Zn–Air Batteries

Author:

Tan Yangyang1,Zhang Zeyi1,Chen Suhao1,Wu Wei1,Yu Liyue1,Chen Runzhe1,Guo Fei1,Wang Zichen1,Cheng Niancai1ORCID

Affiliation:

1. College of Materials Science and Engineering Fuzhou University Fuzhou 350108 P. R. China

Abstract

AbstractLocal geometric strain engineering is useful for modulating the performance of nitrogen‐coordinated transition metal‐carbon catalysts. However, realizing the nano‐level strain is technically challenging. Additionally, the structure‐property relationship between strain degree and performance remains poorly understood. Herein, it is conceptually predict that geometric bending induces more electron transfer from Zn to the coordinated N in Zn─N─C, leading to a positive shift of the d‐band center of the Zn atom, which promotes the adsorption reduction process of the O2 molecule and thus increases the intrinsic oxygen reduction reaction (ORR) activity. Moreover, a low‐temperature non‐saturated coordination strategy is proposed to prepare spherical porous carbon catalysts with surface‐enriched geometrically bent (20‐50°) Zn─N─C sites. Benefiting from the highly active Zn─N─C sites, large specific surface area and abundant pore structure, the optimized catalyst (S─Zn─N─C‐950) exhibited excellent intrinsic alkaline ORR activity (half‐wave potential E1/2 = 0.89 V) and high zinc‐air battery performance (peak power density of 229.2 mW cm−2), exceeding that of commercial Pt/C catalysts. Density functional theory (DFT) calculations show that when the geometrical bending angle is 30–45°, Zn centers with suitable charge transfer to the surrounding N can produce a moderate adsorption strength to the oxygen intermediate state, resulting in optimal ORR activity.

Funder

National Natural Science Foundation of China

Chongqing Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3