Toward understanding the cross‐linking from molecular chains to aggregates by engineering terminals of supramolecular hyperbranched polysiloxane

Author:

Zhang Yuanbo1ORCID,Yuan Junshan1,Hu Jingzhi1,Tian Zhixuan1,Feng Weixu1,Yan Hongxia1

Affiliation:

1. Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Lumines‐cent Materials and Photonic Device, School of Chemistry and Chemical engineering Northwestern Polytechnical University Xi'an China

Abstract

AbstractCrosslinking thermosets with hyperbranched polymers confers them superior comprehensive performance. However, it still remains a further understanding of polymer crosslinking from the molecular chains to the role of aggregates. In this study, three hyperbranched polysiloxane structures (HBPSi‐R) are synthesized as model macromolecules, each featuring distinct terminal groups (R denotes amino, epoxy, and vinyl groups) while similar molecular backbone (Si‐O‐C). These structures were subsequently copolymerized with epoxy monomers to construct interpenetrating HBPSi‐R/epoxy/anhydride co‐polymer systems. The spatial molecular configuration and flexible Si‐O‐C branches of HBPSi‐R endow them with remarkable reinforcement and toughening effects. Notably, an optimum impact strength of 28.9 kJ mol−1 is achieved with a mere 3% loading of HBPSi‐V, nearly three times that of the native epoxy (12.9 kJ mol−1). By contrasting the terminal effects, the aggregation states and crosslinking modes were proposed, thus clarifying the supramolecular‐dominant aggregation mechanism and covalent‐dominant dispersion mechanism, which influences the resulting material properties. This work underscores the significance of aggregate science in comprehending polymer crosslinking and provides theoretical insights for tailoring material properties at a refined molecular level in the field of polymer science.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3