Mathematical analysis of acoustic wave interaction of vibrating rigid plates with subsonic flows

Author:

Hussain Sajjad1,Nawaz Rab2,Bibi Aysha3

Affiliation:

1. School of Qilu Transportation Shandong University Jinan China

2. Center for Applied Mathematics and Bioinformatics (CAMB) Gulf University for Science and Technology Hawally Kuwait

3. Department of Mathematics Quaid‐i‐Azam University Islamabad Islamabad Pakistan

Abstract

This research article investigates the effects of object's vibration and fluid movement on the acoustics of subsonic flows, specifically focusing on the scattering of acoustic waves by a vibrating rigid plate submerged in uniform flow. The acoustic plane wave that impacts the plate, coupled with its oscillatory motion, causes a disruption in the fluid medium. This disturbance, in turn, gives rise to a Rayleigh wave that propagates along the boundary separating the plate and the fluid. The study uses the Wiener‐Hopf technique to analytically model the acoustic scattering by a rigid barrier of finite dimensions and analyze the relationship between acoustics and structures. The method involves applying Fourier transformations to the governing boundary value problem and resolving the Wiener‐Hopf equations using the factorization theorem, Liouville's theorem, and analytical continuation. The integral equations of scattered potential computed asymptotically are used to describe the acoustic characteristics of structures and their interaction with fluid flow in subsonic conditions. The findings of the study reveal the sharp peaks of the scattered potential at certain angles with more oscillation in high subsonic flow. Also, increasing the frequency of the vibrating plate increases the amplitude of the scattered potential but is attenuated in mean flow whereas enhancing plate vibrations amplifies the scattered sound, and it is more vibrant in high subsonic flow than mean flow and no fluid flow. This research has applications in noise reduction, aeronautical engineering, and the detection of underwater structures using acoustic waves and micropolar elastic media.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3