Study on Sound Wave Scattering Effects of Different Markers Placed on Dam Face in Deepwater Reservoir

Author:

Xiang Yan12,Shen GuangZe13ORCID,Cheng ZhengFei1,Zhang Kai12

Affiliation:

1. Nanjing Hydraulic Research Institute, Nanjing 210029, China

2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210098, China

3. Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources, Nanjing 210029, China

Abstract

Reservoir dams are mostly built in alpine valley areas. The water surface of the river valley is narrow and the geometric features of hydraulic structures are complex, which result in different absorption, reflection, and diffraction effects on sound waves for various propagation media. Further, for relatively narrow underwater water space where the underwater detection equipment is located, there is significant interference to the underwater acoustic communication signal. This is a major challenge to underwater positioning technology. Therefore, in this study, the scattering effect of different markers placed on a dam face on the sound waves emitted by sonar carried by a remote control unmanned submersible in a reservoir environment was investigated. The singular boundary method was used to develop a simulation model of the scattering effect on the sound waves of three different markers (i.e., cross boards, spherical bodies, and square plates) placed on a dam face in the deepwater environment of a reservoir. The scattering effect of typical geometrical markers was also investigated with respect to the sound waves of different frequencies and different incident angles. The sound pressure level (SPL) was used as an indicator for determining the scattering effect, so that the geometry of the marker with well scattering effect could be determined. In this study, the Guanyinyan hydropower dam was considered as the research area. The results show that the scattering SPL of the cross board is higher than those of the spherical body and the square plate, i.e., using the cross board as a marker produces the most accurate positioning of the underwater detection remote control unmanned submersible of a dam project in the deepwater environment of a reservoir.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3