Supramolecular photoresponsive polyurethane with movable crosslinks based on photoisomerization of azobenzene

Author:

Zhou Xin1,Ikura Ryohei12,Jin Changming1,Yamaoka Kenji12,Park Junsu12,Takashima Yoshinori123ORCID

Affiliation:

1. Department of Macromolecular Science Graduate School of Science Osaka University Toyonaka Japan

2. Forefront Research Center Graduate School of Science Osaka University Toyonaka Japan

3. Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (OTRI) Osaka University Suita Japan

Abstract

AbstractLight‐driven actuators are widely used for smart devices such as soft robots. One of the main challenges for actuators is achieving rapid responsiveness, in addition to ensuring favorable mechanical properties. Herein, we focused on photoresponsive polyurethane (CD‐Azo‐PU) based on controlling the crystallization of the hard segments in polyurethane (PU) by complexation between azobenzene (Azo) and cyclodextrins (CDs). CD‐Azo‐PU incorporated polyurethane as the main chain and a 1:2 inclusion complex between Azo and γCD as a movable crosslink point. Upon ultraviolet light (UV, λ = 365 nm) irradiation, the photoresponsiveness of CD‐Azo‐PU bent toward the light source (defined as positive), while that of the linear Azo polyurethane (Azo‐LPU) without peracetylated γ‐cyclodextrin diol (TAcγCD‐diOH) as a movable crosslinker bent in the direction opposite the light source. The bending rates were determined to be 0.25°/s for CD‐Azo‐PU and 0.083°/s for Azo‐LPU, indicating that the bending rate for CD‐Azo‐PU was faster than that for Azo‐LPU. By incorporating movable crosslinks into CD‐Azo‐PU, we successfully achieved specific photoresponsive actuation with an enhanced rate.

Funder

Iketani Science and Technology Foundation

Asahi Glass Foundation

Publisher

Wiley

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3