Open circuit fault diagnosis of wind power converter based on VMD energy entropy and time domain feature analysis

Author:

Bai Xiaoze1ORCID,Li Mingduo1ORCID,Di Zhigang1ORCID,Dong Weichao2ORCID,Liang Jing3ORCID,Zhang Jingxuan14ORCID,Sun Hexu2ORCID

Affiliation:

1. College of Electrical Engineering North China University of Science and Technology Tangshan China

2. School of Electrical Engineering Hebei University of Science and Technology Shijiazhuang China

3. School of Electrical Engineering Hebei University of Technology Tianjin China

4. Green Intelligent Mining Technology Innovation Center of Hebei Province Tangshan China

Abstract

AbstractAiming at the shortcomings of feature extraction and fault identification in fault diagnosis of wind power converters, a novel method for open circuit fault diagnosis of wind power converters based on variational mode decomposition (VMD) energy entropy (EE) and time domain feature analysis (TDFA) is proposed. Primarily, the three‐phase output current at the grid side of the wind power converter is collected as the original signal, and the VMD is used to decompose the original signal into a series of intrinsic mode functions (IMF). To reduce noise interference as much as possible, the Pearson correlation coefficient between each mode component and the original signal under different fault states is analyzed, and the IMF component containing the major failure features is selected to calculate the energy entropy of each component; afterward, according to the Pearson correlation coefficient results, the modal components of the first layer are selected for time domain feature analysis; finally, the feature matrix that combines energy entropy and time domain feature analysis is inputted into the long short‐term memory neural network for training and fault identification. The simulation and experimental results show that the open circuit fault diagnosis method proposed in this paper has high accuracy and robustness.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3