A resilient self‐healing approach for active distribution networks considering dynamic microgrid formation

Author:

Zhao Ruifeng1ORCID,Tan Yonggui2,Lu Jiangang1,Guo Wenxin1,Du Hongwei2ORCID

Affiliation:

1. Power Dispatching Control Center Guangdong Power Grid Co., Ltd. Guangzhou Guangdong Province China

2. Nanjing Power Distribution Technology Branch NARI Technology Nanjing Control Systems Co., Ltd. Nanjing Jiangsu Province China

Abstract

AbstractA large number of renewable distributed generation (DG) systems connect to the distribution network, affecting the structure of the traditional distribution network and forming an active distribution network (ADN). Although the accelerating grid penetration of DGs brings significant challenges to the distribution network operation, the islanded operation capability of DGs provides a flexible solution to the self‐healing of ADNs from faults. To ensure that ADN can quickly recover and reconfigure in the event of a fault and continue to maintain safe, economical, and reliable operation, this paper proposes a dynamic microgrid formation method for ADNs combined with the dynamic network reconfiguration and intentional islanding operation of DGs. An optimization model is designed to represent the proposed self‐healing method, maximizing the load restoration and minimizing the DG cost, line network loss, and voltage excursion simultaneously. A binary hybrid optimization solver is applied to pursue the optimal self‐healing schedules from the optimization model. The self‐healing method is evaluated on the Institute of Electrical and Electronics Engineers (IEEE) 33‐node system and the IEEE 123‐node system, which indicate its rationality and effectiveness fully verified. By optimizing the on and off states of the normally open switches and the on‐grid and off‐grid operation states of DGs, ADNs not only get healed with minimum load curtailment, but also achieve minimal DG generation cost, network loss, and node voltage deviation. In addition, compared with traditional solvers, the proposed solver has a slightly higher computational time than the corresponding solver.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3