FMCW Radar on LiDAR map localization in structural urban environments

Author:

Ma Yukai1ORCID,Li Han1,Zhao Xiangrui1,Gu Yaqing1,Lang Xiaolei1,Li Laijian1,Liu Yong1

Affiliation:

1. April Laboratory, Institute of Cyber‐Systems and Control Zhejiang University Hangzhou China

Abstract

AbstractMultisensor fusion‐based localization technology has achieved high accuracy in autonomous systems. How to improve the robustness is the main challenge at present. The most commonly used LiDAR and camera are weather‐sensitive, while the frequency‐modulated continuous wave Radar has strong adaptability but suffers from noise and ghost effects. In this paper, we propose a heterogeneous localization method called Radar on LiDAR Map, which aims to enhance localization accuracy without relying on loop closures by mitigating the accumulated error in Radar odometry in real time. To accomplish this, we utilize LiDAR scans and ground truth paths as Teach paths and Radar scans as the trajectories to be estimated, referred to as Repeat paths. By establishing a correlation between the Radar and LiDAR scan data, we can enhance the accuracy of Radar odometry estimation. Our approach involves embedding the data from both Radar and LiDAR sensors into a density map. We calculate the spatial vector similarity with an offset to determine the corresponding place index within the candidate map and estimate the rotation and translation. To refine the alignment, we utilize the Iterative Closest Point algorithm to achieve optimal matching on the LiDAR submap. The estimated bias is subsequently incorporated into the Radar SLAM for optimizing the position map. We conducted extensive experiments on the Mulran Radar Data set, Oxford Radar RobotCar Dataset, and our data set to demonstrate the feasibility and effectiveness of our proposed approach. Our proposed scan projection descriptors achieves homogeneous and heterogeneous place recognition and works much better than existing methods. Its application to the Radar SLAM system also substantially improves the positioning accuracy. All sequences' root mean square error is 2.53 m for positioning and 1.83° for angle.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3