Environmental and ecological drivers of harmful algal blooms revealed by automated underwater microscopy

Author:

Kenitz Kasia M.1ORCID,Anderson Clarissa R.2,Carter Melissa L.2,Eggleston Emily3,Seech Kristi2,Shipe Rebecca4,Smith Jayme5,Orenstein Eric C.16ORCID,Franks Peter J. S.1ORCID,Jaffe Jules S.1,Barton Andrew D.17

Affiliation:

1. Scripps Institution of Oceanography University of California San Diego La Jolla California

2. Southern California Coastal Ocean Observing System Scripps Institution of Oceanography, University of California San Diego La Jolla California

3. Department of Biological Sciences University of Southern California Los Angeles California

4. Institute of the Environment and Sustainability, University of California Los Angeles Los Angeles California

5. Southern California Coastal Water Research Project Authority Costa Mesa California

6. Monterey Bay Aquarium Research Institute Monterey California

7. Department of Ecology, Behavior and Evolution University of California San Diego La Jolla California

Abstract

AbstractIn recent years, harmful algal blooms (HABs) have increased in their severity and extent in many parts of the world and pose serious threats to local aquaculture, fisheries, and public health. In many cases, the mechanisms triggering and regulating HAB events remain poorly understood. Using underwater microscopy and Residual Neural Network (ResNet‐18) to taxonomically classify imaged organisms, we developed a daily abundance record of four potentially harmful algae (Akashiwo sanguinea, Chattonella spp., Dinophysis spp., and Lingulodinium polyedra) and major grazer groups (ciliates, copepod nauplii, and copepods) from August 2017 to November 2020 at Scripps Institution of Oceanography pier, a coastal location in the Southern California Bight. Random Forest algorithms were used to identify the optimal combination of environmental and ecological variables that produced the most accurate abundance predictions for each taxon. We developed models with high prediction accuracy for A. sanguinea (), Chattonella spp. (), and L. polyedra (), whereas models for Dinophysis spp. showed lower prediction accuracy (). Offshore nutricline depth and indices describing climate variability, including El Niño Southern Oscillation, Pacific Decadal Oscillation, and North Pacific Gyre Oscillation, that influence regional‐scale ocean circulation patterns and environmental conditions, were key predictor variables for these HAB taxa. These metrics of regional‐scale processes were generally better predictors of HAB taxa abundances at this coastal location than the in situ environmental measurements. Ciliate abundance was an important predictor of Chattonella and Dinophysis spp., but not of A. sanguinea and L. polyedra. Our findings indicate that combining regional and local environmental factors with microzooplankton populations dynamics can improve real‐time HAB abundance forecasts.

Funder

Simons Foundation

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

Wiley

Subject

Aquatic Science,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3