Harmful Algal Blooms in Eutrophic Marine Environments: Causes, Monitoring, and Treatment

Author:

Lan Jiaxin1,Liu Pengfei23,Hu Xi1ORCID,Zhu Shanshan1

Affiliation:

1. College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China

2. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China

3. Department of Elementary Education, Changsha Normal University, Changsha 410100, China

Abstract

Marine eutrophication, primarily driven by nutrient over input from agricultural runoff, wastewater discharge, and atmospheric deposition, leads to harmful algal blooms (HABs) that pose a severe threat to marine ecosystems. This review explores the causes, monitoring methods, and control strategies for eutrophication in marine environments. Monitoring techniques include remote sensing, automated in situ sensors, modeling, forecasting, and metagenomics. Remote sensing provides large-scale temporal and spatial data, while automated sensors offer real-time, high-resolution monitoring. Modeling and forecasting use historical data and environmental variables to predict blooms, and metagenomics provides insights into microbial community dynamics. Control treatments encompass physical, chemical, and biological treatments, as well as advanced technologies like nanotechnology, electrocoagulation, and ultrasonic treatment. Physical treatments, such as aeration and mixing, are effective but costly and energy-intensive. Chemical treatments, including phosphorus precipitation, quickly reduce nutrient levels but may have ecological side effects. Biological treatments, like biomanipulation and bioaugmentation, are sustainable but require careful management of ecological interactions. Advanced technologies offer innovative solutions with varying costs and sustainability profiles. Comparing these methods highlights the trade-offs between efficacy, cost, and environmental impact, emphasizing the need for integrated approaches tailored to specific conditions. This review underscores the importance of combining monitoring and control strategies to mitigate the adverse effects of eutrophication on marine ecosystems.

Funder

Research Foundation of Education Bureau of Hunan Province

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3