Multiomic integration reveals neuronal‐extracellular vesicle coordination of gliotic responses in degeneration

Author:

Cioanca Adrian V.12,Wooff Yvette12ORCID,Aggio‐Bruce Riemke12,Sekar Rakshanya12,Dietrich Catherine13,Natoli Riccardo12

Affiliation:

1. Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine The Australian National University Canberra Australia

2. School of Medicine and Psychology, College of Health and Medicine The Australian National University Canberra Australia

3. Peter MacCallum Cancer Centre Melbourne Victoria Australia

Abstract

AbstractIn the central nervous system (CNS), including in the retina, neuronal‐to‐glial communication is critical for maintaining tissue homeostasis including signal transmission, transfer of trophic factors, and in the modulation of inflammation. Extracellular vesicle (EV)‐mediated transport of molecular messages to regulate these processes has been suggested as a mechanism by which bidirectional communication between neuronal and glial cells can occur. In this work we employed multiomics integration to investigate the role of EV communication pathways from neurons to glial cells within the CNS, using the mouse retina as a readily accessible representative CNS tissue. Further, using a well‐established model of degeneration, we aimed to uncover how dysregulation of homeostatic messaging between neurons and glia via EV can result in retinal and neurodegenerative diseases. EV proteomics, glia microRNA (miRNA) Open Array and small RNA sequencing, and retinal single cell sequencing were performed, with datasets integrated and analysed computationally. Results demonstrated that exogenous transfer of neuronal miRNA to glial cells was mediated by EV and occurred as a targeted response during degeneration to modulate gliotic inflammation. Taken together, our results support a model of neuronal‐to‐glial communication via EV, which could be harnessed for therapeutic targeting to slow the progression of retinal‐, and neuro‐degenerations of the CNS.

Publisher

Wiley

Subject

Cell Biology,Histology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3