Therapeutic potential of red blood cell-derived extracellular vesicles in reducing neuroinflammation and protecting against retinal degeneration

Author:

Sekar RakshanyaORCID,Cioanca Adrian V.ORCID,Yang Yilei (Evelyn),Kamath Karthik ShantharamORCID,Carroll Luke,Natoli RiccardoORCID,Wooff YvetteORCID

Abstract

AbstractNeuroinflammation is a pathological process mediated through immune cell activation and pro-inflammatory cytokine release, resulting in neuronal cell death. In the central nervous system (CNS), neuroinflammation is a characteristic feature underlying the onset and progression of retinal and neurodegenerative diseases. Targeting neuroinflammation to reduce neuronal cell death and protect against visual and cognitive declines is therefore a key therapeutic strategy. However, due to the complex and multi-faceted nature of these diseases, to date there has been little therapeutic success with single target approaches insufficient to tackle widespread and multi-pathway inflammatory cascades. Furthermore, as the retina and brain reside within immune-privileged environments, a major challenge in treating these diseases is producing and delivering a therapeutic that, in itself, does not exacerbate inflammation. Extracellular vesicles (EV), derived from red blood cells (RBC EV), present a promising solution to overcome these hurdles, due to their innate ability to cross blood-tissue barriers, biocompatible nature, and their broad anti-inflammatory properties to modulate complex neuroinflammatory pathways.This study therefore investigated the therapeutic potential of RBC EV in mediating neuroinflammation using anin-vivophoto-oxidative damage model of retinal degeneration as a model for CNS neuroinflammation. In this work, we developed a novel incubation pipeline using N1 medium supplement and superoxide dismutase (SOD) supplementation to promote the production of safe, neuroprotective, and anti-inflammatory RBC EV. Delivery of RBC EVin vivo, was shown to be safe with strong penetration across all retinal layers. Further, therapeutic administration of RBC EV via local intravitreal injection significantly reduced inflammation and cell death and preserved retinal function. Notably, strong safety and therapeutic efficacy was also demonstrated in the retina following systemic (intraperitoneal) administration, highlighting a potential game-changing approach for less-invasive therapeutic delivery to the CNS. Finally, multi-omic analyses andin vitrofindings supported an anti-inflammatory mechanism-of-action, with RBC EV modulating pro-inflammatory cytokine release, including those known to be involved in the pathogenesis of retinal and neurodegenerative diseases.Taken together, these findings highlight the broad applicability of RBC EV in treating neuroinflammation in the CNS, presenting a scalable and effective treatment approach for these currently untreatable diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3