Therapeutic extracellular vesicle production is substantially increased by inhibition of cellular cholesterol biosynthesis

Author:

Martin Shelly1,McConnell Russell1,Harrison Rane1,Jang Su Chul1,Sia Chang Ling1,Kamerkar Sushrut1,Duboff Anna1,Jacob Lisa1,Finn Jonathan1,Estes Scott1ORCID

Affiliation:

1. Codiak BioSciences Cambridge Massachusetts USA

Abstract

AbstractExtracellular vesicles (EVs) are a new therapeutic modality with the promise to treat many diseases through their ability to deliver diverse molecular cargo. As with other emerging modalities transitioning into the industrialization phase, all aspects of the manufacturing process are rich with opportunities to enhance the ability to deliver these medicines to patients. With the goal of improving cell culture EV productivity, we have utilized high throughput siRNA screens to identify the underlying genetic pathways that regulate EV productivity to inform rational host cell line engineering and media development approaches. The screens identified multiple metabolic pathways of potential interest; one of which was validated and shown to be a ready implementable, cost‐effective strategy to increase EV titers. We show that both EV volumetric and specific productivity from HEK293 and CHO‐S were increased in a dose and cell line‐dependent manner up to ninefold when cholesterol synthesis was inhibited by the inclusion of statins in the cell culture media. In addition, we show in response to statin treatment, elevation of EV markers in mesenchymal stem cell (MSC) cell culture media suggesting this approach can also be applicable to MSC EVs. Furthermore, we show that the EVs produced from statin‐treated HEK293 cultures are effectively loaded by both endogenous and exogenous loading methods and have equivalent in vitro or in vivo potency relative to EVs from untreated cultures.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3