Self‐standing piezoelectric nanogenerator fabrics from ZnO‐doped PVDF nanofiber yarns

Author:

Borazan İsmail12ORCID,Celik Bedeloglu Ayse2ORCID

Affiliation:

1. Department of Textile Engineering Bartın University Bartın Turkey

2. Department of Polymer Materials Engineering Bursa Technical University Bursa Turkey

Abstract

AbstractToday a wide variety of wearable electronics are in our daily lives and their uses are increasing. The development of portable, flexible, lightweight, cost‐effective, and stable devices that produce sustainable energy with renewable approaches in the field of wearable electronics, as in every field, is one of the important issues of today. According to their volume and weight, the use of nanofibers with high surface area in energy‐generating devices may bring them advantages such as lightness and higher energy density. Therefore, in recent years, researchers have focused on the development of nanofiber‐based nanogenerators that produce energy using mechanical energy in a sustainable and renewable way. In this paper, self‐standing piezoelectric nanogenerator (PENG) fabrics were obtained by developing flexible composite poly(vinylidene fluoride) (PVDF) nanofiber yarns doped with zinc oxide (ZnO) nanoparticles at different rates to provide higher power output. It has been characterized from electromechanical, structural, and morphological aspects. The most successful self‐standing PENG fabric obtained (at 5% ZnO loading) doubled the energy output of the fabric made from pure PVDF nanofiber yarn and provided a peak total power of 81 μW and a power density of 30 μW/cm2. The present results open up the field for the development of PVDF/ZnO‐based nanomats and their use in sensors and actuators in the healthcare and engineering industries.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

European Cooperation in Science and Technology

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3