Stability of clinical prediction models developed using statistical or machine learning methods

Author:

Riley Richard D.1ORCID,Collins Gary S.2ORCID

Affiliation:

1. Institute of Applied Health Research College of Medical and Dental Sciences University of Birmingham Birmingham UK

2. Centre for Statistics in Medicine Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK

Abstract

AbstractClinical prediction models estimate an individual's risk of a particular health outcome. A developed model is a consequence of the development dataset and model‐building strategy, including the sample size, number of predictors, and analysis method (e.g., regression or machine learning). We raise the concern that many models are developed using small datasets that lead to instability in the model and its predictions (estimated risks). We define four levels of model stability in estimated risks moving from the overall mean to the individual level. Through simulation and case studies of statistical and machine learning approaches, we show instability in a model's estimated risks is often considerable, and ultimately manifests itself as miscalibration of predictions in new data. Therefore, we recommend researchers always examine instability at the model development stage and propose instability plots and measures to do so. This entails repeating the model‐building steps (those used to develop the original prediction model) in each of multiple (e.g., 1000) bootstrap samples, to produce multiple bootstrap models, and deriving (i) a prediction instability plot of bootstrap model versus original model predictions; (ii) the mean absolute prediction error (mean absolute difference between individuals’ original and bootstrap model predictions), and (iii) calibration, classification, and decision curve instability plots of bootstrap models applied in the original sample. A case study illustrates how these instability assessments help reassure (or not) whether model predictions are likely to be reliable (or not), while informing a model's critical appraisal (risk of bias rating), fairness, and further validation requirements.

Funder

Cancer Research UK

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3