Mobile mechanical signal generator for macrophage polarization

Author:

Jiang Jiamiao1,Wang Fei1,Huang Weichang2,Sun Jia1,Ye Yicheng1,Ou Juanfeng1,Liu Meihuan1,Gao Junbin1,Wang Shuanghu3,Fu Dongmei4,Chen Bin1,Liu Lu1,Peng Fei4,Tu Yingfeng1ORCID

Affiliation:

1. NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences Southern Medical University Guangzhou China

2. Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine Affiliated Dongguan Hospital Southern Medical University Dongguan China

3. The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui Lishui China

4. School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou China

Abstract

AbstractThe importance of mechanical signals in regulating the fate of macrophages is gaining increased attention recently. However, the recently used mechanical signals normally rely on the physical characteristics of matrix with non‐specificity and instability or mechanical loading devices with uncontrollability and complexity. Herein, we demonstrate the successful fabrication of self‐assembled microrobots (SMRs) based on magnetic nanoparticles as local mechanical signal generators for precise macrophage polarization. Under a rotating magnetic field (RMF), the propulsion of SMRs occurs due to the elastic deformation via magnetic force and hydrodynamics. SMRs perform wireless navigation toward the targeted macrophage in a controllable manner and subsequently rotate around the cell for mechanical signal generation. Macrophages are eventually polarized from M0 to anti‐inflammatory related M2 phenotypes by blocking the Piezo1‐activating protein‐1 (AP‐1)‐CCL2 signaling pathway. The as‐developed microrobot system provides a new platform of mechanical signal loading for macrophage polarization, which holds great potential for precise regulation of cell fate.‐

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3