Helicity characteristics of cyclonic vortexes and their effect on convection in a wide‐ranging extreme rainstorm in China

Author:

Chen Yongren123ORCID,Li Yueqing23,Liu Xinchao4,Zhu Li5

Affiliation:

1. Meteorological Disaster Defense Technology Center Sichuan Provincial Meteorological Service Chengdu Sichuan China

2. Institute of Plateau Meteorology, China Meteorological Administration Chengdu Sichuan China

3. Heavy Rain and Drought–Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province Chengdu Sichuan China

4. Sichuan Meteorological Service Centre Chengdu Sichuan China

5. Severe Weather in Northeast Sichuan Key Laboratory of Nanchong City Nanchong Sichuan China

Abstract

AbstractOn 20–22 July 2012, a severe rainstorm occurred in the Sichuan basin of Southwest China and in the Beijing area of North China. This rainstorm was related to the activities of a Tibetan Plateau vortex (TPV) and Southwest China vortex (SWCV). By using radiosonde, satellite brightness temperature, and NCEP_FNL data, we investigated the helicity characteristics nearly the vortexes and their effect on convection. Results showed that (1) strong precipitation in the Sichuan basin was mainly related to the interaction between the TPV and SWCV, while strong precipitation in the Beijing area was related to the northward movement of a cyclonic vortex caused by a split in the SWCV. (2) During the occurrence of the rainstorm, four mesoscale convection systems (MCSs) were observed. Their vertical structure showed a positive vorticity–negative divergence in the lower levels, and negative vorticity–positive divergence in the upper levels, accompanied by vertical upward movement. This was an important factor in the development and maintenance of MCSs, as well as one of the mechanisms for producing heavy precipitation. On this basis, we further discussed the effect of helicity on the MCSs in the atmospheric environment with rotational characteristics. Results showed that the increase in negative water vapour helicity and storm‐relative helicity were more likely to cause a strong development of MCSs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3